LIFTING SUBGROUPS OF SYMPLECTIC GROUPS OVER Z/lZ

نویسندگان

  • AARON LANDESMAN
  • ASHVIN A. SWAMINATHAN
  • YUJIE XU
چکیده

For a positive integer g, let Sp 2g(R) denote the group of 2g × 2g symplectic matrices over a ring R. Assume g ≥ 2. For a prime number l, we show that any closed subgroup of Sp 2g(Zl) that surjects onto Sp2g(Z/lZ) must in fact equal all of Sp2g(Zl). Our result is motivated by group theoretic considerations that arise in the study of Galois representations associated to abelian varieties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lifting subgroups of symplectic groups over

For a positive integer g, let Sp2g(R) denote the group of 2g× 2g symplectic matrices over a ring R. Assume g ≥ 2. For a prime number , we give a self-contained proof that any closed subgroup of Sp2g(Z ) which surjects onto Sp2g(Z/ Z) must in fact equal all of Sp2g(Z ). The result and the method of proof are both motivated by group-theoretic considerations that arise in the study of Galois repre...

متن کامل

The Symplectic Floer Homology of Composite Knots

We develop a method of calculation for the symplectic Floer homology of composite knots. The symplectic Floer homology of knots defined in [15] naturally admits an integer graded lifting, and it formulates a filtration and induced spectral sequence. Such a spectral sequence converges to the symplectic homology of knots in [15]. We show that there is another spectral sequence which converges to ...

متن کامل

Companion Forms for Unitary and Symplectic Groups

We prove a companion forms theorem for ordinary n-dimensional automorphic Galois representations, by use of automorphy lifting theorems developed by the second author, and a technique for deducing companion forms theorems due to the first author. We deduce results about the possible Serre weights of mod l Galois representations corresponding to automorphic representations on unitary groups. We ...

متن کامل

iv : d g - ga / 9 60 50 03 v 1 5 M ay 1 99 6 Flux homomorphism on symplectic groupoids ∗

For any Poisson manifold P , the Poisson bracket on C∞(P ) extends to a Lie bracket on the space Ω(P ) of all differential one-forms, under which the space Z(P ) of closed one-forms and the space B(P ) of exact one-forms are Lie subalgebras. These Lie algebras are related by the exact sequence: 0 −→ R −→ C∞(P ) d −→ Z(P ) f −→ H(P,R) −→ 0, where H(P,R) is considered as a trivial Lie algebra, an...

متن کامل

The Z–graded symplectic Floer cohomology of monotone Lagrangian sub–manifolds

We define an integer graded symplectic Floer cohomology and a Fintushel–Stern type spectral sequence which are new invariants for monotone Lagrangian sub–manifolds and exact isotopes. The Z–graded symplectic Floer cohomology is an integral lifting of the usual ZΣ(L) –graded Floer–Oh cohomology. We prove the Künneth formula for the spectral sequence and an ring structure on it. The ring structur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017